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Abstract

A numerical integration method that has rapid convergence for integrands with
known singularities is presented. Based on endpoint corrections to the trapezoidal
rule, the quadratures are suited for the discretization of a variety of integral equations
encountered in mathematical physics. The quadratures are based on a technique in-
troduced by Rokhlin (Computers Math. Applic. 20, pp. 51-62, 1990). The present
modi�cation controls the growth of the quadrature weights and permits higher-order
rules in practice. Several numerical examples are included.
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1 Introduction

The discretization of a linear Fredholm integral equation of the second kind,

f(x) +

Z b

a

K(x; t) f(t) dt = g(x); (1)

where the kernel K is in L2([a; b]2) and the right hand side g and unknown f are in L2([a; b]),
is typically obtained either by projection of the equation onto an n-dimensional subspace
of L2 (Galerkin method or method of moments), or by approximation of the integral at n
points fx1; : : : ; xng � [a; b] by a quadrature,

Z b

a

K(xi; t) f(t) dt �
nX

j=1

wijK(xi; xj) f(xj); i = 1; : : : ; n (2)
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(Nystr�om method). Both methods lead to a system of n linear algebraic equations in n
unknowns, which are then solved by one of a variety of techniques. It is well known that
the rate of convergence of the Galerkin method is determined by the convergence of the
subspace projections to the underlying functions, as well as the accuracy of the computed
projection coe�cients (inner products) forK and g. Also known, though perhaps less widely
appreciated, is the fact that the Nystr�om solution converges, as a function of n, to the true
solution f at a rate equal to the rate of convergence of the quadrature to the integral (see,
e.g., Mikhlin [5]).

For a large variety of physical problems, the kernel K is singular for x = t, dooming most
conventional quadrature schemes to slow convergence. Often, however, the kernel is derived
from a Green's function with singularity of known type. For this case Rokhlin [6] constructed
quadratures based on corrections to the trapezoidal rule. His scheme achieves kth order
convergence by altering 2k weights to exactly integrate the functions ti �s(x�t)+tj , for i; j =
0; : : : ; k�1, where the function s contains the singularity ofK. Rokhlin's method is restricted
to fairly low orders of convergence, due to explosive growth in magnitude of the altered
weights with k. Starr [7] constructed quadratures based on points at Chebyshev nodes
on subintervals of [a; b], with quadrature weights again determined so that the functions
ti � s(x� t)+ tj are integrated exactly for i; j = 0; : : : ; k� 1. To prevent the rapid growth of
the quadrature weights with k, he allowed extra weights (e.g., 3k weights for 2k constraining
equations) and minimized their sum of squares.

This paper introduces quadrature rules inspired by the rules of Rokhlin and Starr. Global
rules are developed, based on corrections to the trapezoidal rule, that achieve arbitrary order
convergence, with weights of small magnitude, for integrands with known singularities. The
rules are constructed as follows:

1. For di�erentiable integrands on [a; b], the trapezoidal rule is corrected at the endpoints
according to the Euler-Maclaurin formula. The derivatives at a and b appearing in
the Euler-Maclaurin formula are computed to the necessary order by �nite-di�erence
expressions of the integrand. The coe�cients in the expressions are limited in mag-
nitude by using values of the integrand at more points than dictated by the order of
convergence.

2. For an integrand with a singularity of known type at x, the interval of integration is
divided into subintervals [a; x] and [x; b] so that the singularity lies at one endpoint of
each subinterval. The trapezoidal rule for each interval is corrected at the di�erentiable
end according to 1. At the singular end, corrections are made so that the functions
ti � s(x � t) + tj are integrated exactly, for i; j = 0; : : : ; k � 1. Here the integrand is
assumed to have the form f(t) �s(x� t)+g(t), where f and g have multiple continuous
derivatives. As in 1., the correction weights are limited in magnitude by allowing more
than 2k weights and minimizing their sum of squares.

We de�ne these quadrature rules in x2, establish their analytical properties in x3, present
numerical examples in x4, and conclude with a brief discussion in x5.
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2 Corrected Trapezoidal Rules

It is well known that the trapezoidal rule for integration can be modi�ed at the ends via
the Euler-Maclaurin summation formula to a rapidly convergent rule, provided that the
integrand is su�ciently di�erentiable. We will suppose, instead, that the integrand is sin-
gular at one end of the interval and the form of the singularity is known. In this case a
modi�cation at that end may be determined so that the corrected trapezoidal rule is rapidly
convergent. In the following subsection, we de�ne endpoint corrections, for di�erentiable
integrands, that depend on the node spacing h for the trapezoidal rule with n subintervals,
the order k of the corrected rule, the number of correction weights m, and the node spacing
h0 = h=c of the corrections. In the following subsection, we use these corrections at the
smooth end and de�ne corrections at the singular end with order k0, number of correction
weights m0, and correction node spacing h00 = h=c0.

2.1 Di�erentiable Integrands

We begin with the assumption that the integrand is di�erentiable throughout the interval
of integration. For k an even positive integer, m a positive integer with m > k, and c 2 R,
c > 0, we de�ne the 1�m vector dmck by the formula

dmck = vck � (M
m
k )I ; (3)

where the 1� (k � 1) vector vck is de�ned by

vck =

�
0;
B2

2!
c2; 0;

B4

4!
c4; : : : ; 0;

Bk�2

(k � 2)!
ck�2; 0

�
; (4)

the m � (k � 1) matrix Mm
k is de�ned by

Mm
k =

0
BBBBBB@

1 0 0 � � � 0
1 1 1

2! � � � 1
(k�2)!

1 2 22

2! � � � 2k�2

(k�2)!
...

...

1 m � 1 (m�1)2

2! � � � (m�1)k�2

(k�2)!

1
CCCCCCA
; (5)

Bj denotes the jth Bernoulli number (see, e.g., [1]), and superscript I denotes pseudoinverse
(see, e.g., [3]). We de�ne the linear operator Tn(�; a; b) by the formula

Tn(f; a; b) = h �

�
1

2
f(a) + f(a + h) + : : :+ f(b � h) +

1

2
f(b)

�
; (6)

and the linear operator Dmn
ck (�; a; b) by the formula

Dmn
ck (f; a; b) = h � dmck �

0
BBB@

f(a) + f(b)
f(a + h0) + f(b � h0)

...
f(a + (m � 1)h0) + f(b � (m � 1)h0)

1
CCCA (7)
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where h = (b�a)=n and h0 = h=c. For di�erentiable functions f , the expression Dmn
ck (f; a; b)

is a kth order correction to the trapezoidal rule.

Theorem 2.1 Suppose the function f : [a; b] ! R is k times continuously di�erentiable.
Then there exists C > 0 independent of n such that

�����
Z b

a

f(x) dx� Tn(f; a; b)�Dmn
ck (f; a; b)

����� <
C

nk
: (8)

Proof. The Euler-Maclaurin formula (see, e.g., [3]) states

Z b

a

f(x) dx = Tn(f; a; b) +

k=2�1X
i=1

h2i
B2i

(2i)!

�
f (2i�1)(a) � f (2i�1)(b)

�

+ hk
Bk

k!
(a� b)f (k)(�); (9)

for some � 2 [a; b]. Taylor's expansion of f about a is

f(a + i h0) =
k�2X
j=0

f (j)(a)
(i h0)j

j!
+ f (k�1)(�i)

(i h0)k�1

(k � 1)!
; (10)

with a � �i � a+ i h0, for i = 0; 1; : : : ;m� 1, which can be written in matrix form as

0
BBB@

f(a)
f(a + h0)

...
f(a + (m � 1)h0)

1
CCCA =Mm

k �

0
BBB@

f(a)
f 0(a)
...

f (k�2)(a)

1
CCCA + �h0 ; (11)

where Mm
k is de�ned in (5) and �h0 is a (k�1)�1 vector with elements of order O((h0)k�1).

Similarly, we obtain

0
BBB@

f(b)
f(b � h0)

...
f(b � (m � 1)h0)

1
CCCA =Mm

k �

0
BBB@

f(b)
�f 0(b)

...
(�1)(k�2)f (k�2)(b)

1
CCCA + �0h0 : (12)

The matrixMm
k is of rank k� 1, for the functions xj=j!, for j = 0; 1; : : :, form a Chebyshev

system; hence
(Mm

k )I Mm
k = Ik�1; (13)

the identity matrix of dimension k � 1. Combination of (7), (9), (11), (12), and (13) yields
(8).
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Remark 2.2 Theorem 2.1 does not address the form of the dependence of C on f , a, b, k,
c, and m. It is not di�cult to see that C depends on f (k)(�), for some � 2 [a; b]. It also
depends on the accuracy of the �nite-di�erence approximations to the odd derivatives of
f , as represented by Dmn

ck . While the order of these approximations is O(hk), the constant
depends on m=c, as will be seen in the examples. For m=c small, the error is dominated by
the Euler-Maclaurin error hkf (k)(�)(a � b)Bk=k!.

2.2 Singular Integrands

We now consider integrands of the form

f(x) = �(x) � s(x) +  (x) (14)

for all x 2 (0; b], where �;  2 Ck([0; b]) and the function s 2 Ck((0; b]) is singular at 0, but
integrable on the interval [0; b]. We assume that the numerical separation of f into the two
summands of (14) is unavailable in practice; for quadratures in the contrary case see Kress
[4]. We will see that endpoint corrections of the trapezoidal rule which make the quadrature
exact for functions xi � s(x) + xj, for i; j = 0; : : : ; k� 1, are in general kth order convergent.
We de�ne the right-end corrected rule Rmn

ck (�; b) by the formula

Rmn
ck (f; b) = T 0n(f; b) + h � dmck �

0
BBB@

f(b)
f(b� h0)

...
f(b � (m � 1)h0)

1
CCCA ; (15)

where the linear operator T 0n(�; b) is de�ned by

T 0n(f; b) = h �

�
f(h) + f(2h) + � � �+ f(b � h) +

1

2
f(b)

�
(16)

and dmck is de�ned by (3); h = b=n and h0 = h=c. We denote the error of the right-end
corrected rule as follows:

Emn
ck (f; b) =

Z b

0

f(x) dx�Rmn
ck (f; b): (17)

For positive integers k0 and m0, and c0 2 R, c0 > 0, we de�ne the 1 � m0 vector �mm0n
ckc0k0 by

the formula
�mm0n
ckc0k0 = h�1 � umn

ckk0 � (L
m0n
c0k0 )

I ; (18)

where the 1� 2k0 vector umn
ckk0 is de�ned by

umn
ckk0 =

D
Emn
ck (1; b); : : : ; Emn

ck (xk
0�1; b);

Emn
ck (s(x); b); : : : ; Emn

ck (xk
0�1 � s(x); b)

E
;

(19)
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and the m0 � 2k0 matrix Lm0n
c0k0 is de�ned by

Lm0n
c0k0 =

0
BBB@

1 h00 � � � (h00)k
0�1 s(h00) � � � (h00)k

0�1 � s(h00)

1 2h00 � � � (2h00)k
0�1 s(2h00) � � � (2h00)k

0�1 � s(2h00)
...

...
...

...

1 m0h00 � � � (m0h00)k
0�1 s(m0h00) � � � (m0h00)k

0�1 � s(m0h00)

1
CCCA ; (20)

where h00 = h=c0 and h = b=n. We de�ne the linear operator �mm0n
ckc0k0 (�; b) by the formula

�mm0n
ckc0k0 (f; b) = h � �mm0n

ckc0k0 �

0
BBB@

f(h00)
f(2h00)

...
f(m0h00)

1
CCCA ; (21)

and the following theorem holds. Its proof is based on the observation that the integrand f is
the sum of two parts, one integrated exactly, and the other vanishing at 0 along with several
of its derivatives. The proof directly follows that of Theorem 2.1 in [6], and is omitted.

Theorem 2.3 Suppose the function f : [a; b]! R is given by (14), and that the elements
of �mm0n

ckc0k0 de�ned in (18) are bounded with respect to n. Then there exists C > 0 independent
of n such that �����

Z b

0

f(x) dx �Rmn
ck (f; b)��mm0n

ckc0k0 (f; b)

����� <
C

nmin(k;k0)
: (22)

We will see that the condition on �mm0n
ckc0k0 is met if k0 < k, i.e., if the correction at the smooth

end is of higher order than the correction at the singular end. In this case, then, we obtain
quadrature rules with order of convergence k0, which is arbitrary. In the next section we
demonstrate that the other parameters determining the quadrature weights can be chosen
so that the convergence is not overshadowed by roundo� error.

3 The Size of the Correction Weights

It is well known that Newton-Cotes quadrature rules, with n equispaced nodes, and weights
determined so as to exactly integrate polynomials of degree less than n, are impractical for
large n due to explosively growing weights (see, e.g., [8]). It might be expected that �nite-
di�erence approximations to the high-order Euler-Maclaurin corrections to the trapezoidal
rule would su�er a similar fate, which is indeed the case. But the size of the weights can be
controlled by using more weights than the order of the rule and (for the Euler-Maclaurin
corrections) by increasing the spacing between correction nodes. The following theorem
governs the behavior of the elements of dmck as c and m are varied.

Theorem 3.1 Suppose the vector dmck of correction coe�cients is de�ned by (3). Then we
have the limit

lim
m!1

max
1�i�m

j(dmck)ij = 0; (23)
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furthermore, for any 
 2 R, 
 > 0, the value

max
1�i�m

j(dm
�m;k)ij (24)

is bounded with respect to m.

Proof. Let 
 = c=m (not necessarily a constant). We rearrange equation (3) for dmck to
obtain

dmck =

�
0;
B2

2

2; : : : ;

Bk�2

k � 2

k�2; 0

�
�m �

0
BBB@

1 0 � � � 0
1 1

m � � � ( 1
m )k�2

...
...

1 m�1
m � � � (m�1m )k�2

1
CCCA

I

; (25)

where we denote the vector on the right hand side by ~v
k and the matrix by ( ~Mm
k )I .

We denote the sequence of orthonormal (shifted and scaled Legendre) polynomials for the
interval [0; 1] by p0; p1; : : :; the moments �ij are de�ned by the formula

�ij =

Z 1

0

pi(x)x
j dx; i; j = 0; 1; 2; : : : ; (26)

the (k � 1)� (k � 1) matrix �k by

�k = f�ijgi=0;:::;k�2; j=0;:::;k�2; (27)

and the (k � 1)�m matrixMm
k by

Mm
k = fpi(j=m)gi=0;:::;k�2; j=0;:::;m�1: (28)

We obtain

lim
m!1

1

m
�Mm

k � ~Mm
k = �k (29)

from the observation that each element of the matrix on the left is a rectangular-rule quadra-
ture for the corresponding element on the right. For a vector v we let kvk denote maxi jvij.
Combining (25) and (29) we have

lim
m!1

kdmckk = lim



~v
k �m � ( ~Mm

k )I





� lim



~v
k

�
(m�1 ~Mm

k )I � �k
�1Mm

k

�


 + lim


~v
k � �k�1Mm

k




= lim



~v
k � �k�1Mm
k



 ;
if 
 is bounded. If 
 is a constant, the latter limit is bounded by



~v
k � �k�1

 � (k �
1) sup jpi(x)j, where the supremum is taken over x 2 [0; 1] and i � k � 2, giving (24); if

 ! 0 as m!1, then the limit is 0, yielding (23).
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Theorem 3.1 implies that we can choose the number of correction weights m and their
relative spacing c = h=h0 such that c=m, and magnitude of the largest correction weight,
is as small as desired. The tradeo� is that the quadrature error constant increases as c=m
decreases; our experiments indicate, however, that a favorable balance is possible. A similar
situation exists for the singularity correction weights �mm0n

ckc0k0 .

Theorem 3.2 Suppose that for s(x) = x� with 0 < j�j < 1, the vector �mm0n
ckc0k0 of correction

weights is de�ned by (18), with k0 < k. Then for any 
 2 R, 
 > 0, the value

max
1�i�m0

j(�m;m0 ;n
c;k;
�m0;k0)ij (30)

is bounded with respect to m0 and n, and furthermore, we have the limit

lim
m0!1

max
1�i�m0

j(�mm0n
ckc0k0 )ij = 0: (31)

Proof. Let 
 = c0=m0. We rearrange (18) to obtain

�mm0n
ckc0k0 = h�1 � ~umm0n

ckc0k0 � (~L
m0

k0 )
I ; (32)

where the 1� 2k0 vector ~umm0n0

ckc0k0 is de�ned by

~umm0n0

ckc0k0 =
D
Emn
ck (1; b)=1; : : : ; Emn

ck (xk
0�1; b)=(m0h00)k

0�1;

Emn
ck (x�; b)=(m0h00)�; : : : ; Emn

ck (x�+k
0�1; b)=(m0h00)�+k

0�1
E
;

(33)

and the m0 � 2k0 matrix ~Lm0

k0 is de�ned by

~Lm0

k0 =

0
BBB@

1 1
m0

� � � ( 1
m0
)k

0�1 ( 1
m0
)� � � � ( 1

m0
)�+k

0�1

1 2
m0

� � � ( 2
m0
)k

0�1 ( 2
m0
)� � � � ( 2

m0
)�+k

0�1

...
...

...
...

1 1 � � � (1)k
0�1 (1)� � � � (1)�+k

0�1

1
CCCA : (34)

We now use the observation (see [6]) that for p > �1 and a quadrature Rmn
ck (xp; b) of

right-end order k � 2, there is a constant C > 0 such that for p < k,�����
Z b

0

xp dx�Rmn
ck (xp; b)

����� <
C

np+1
: (35)

Combining (17), (33), and (35) we obtain

���(~umm0n0

ckc0k0 )i

��� =

��Emn
ck (xi�1; b)

��
(m0h00)i�1

<
Ci

n(b=
)i�1
; (36)

���(~umm0n0

ckc0k0 )i+k

��� =

��Emn
ck (x�+i�1; b)

��
(m0h00)�+i�1

<
Ci+k

n(b=
)�+i�1
; (37)

for i = 1; : : : ; k0. The pseudoinverse of ~Lm0

k0 is bounded, as can be shown by a derivation
similar to that in the proof of Theorem 2.3. The combination of (32), (36), (37), and the
bound for (~Lm0

k0 )
I yields (30), for 
 bounded, and (31), if c0 = 
 �m is a constant.
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4 Numerical Examples

4.1 Di�erentiable Integrands

The well-known fourth order quadrature formula (see, e.g., [9])

Z b

a

f(x) dx � h �

�
3

8
f(a) +

7

6
f(a + h) +

23

24
f(a + 2h) + f(a + 3h)+ � � �

+ f(b� 3h) +
23

24
f(b � 2h) +

7

6
f(b � h) +

3

8
f(b)

�

is the rule Tn(f; a; b) + Dmn
ck (f; a; b) with c = 1 and m = k � 1 = 3. In this case, dmck =

h�1=8; 1=6;�1=24i. Various other values of dmck are given in Table 1.
We have tested the convergence of these rules for the function f(x) = sin(23x)+cos(24x)

on the interval [0; 1]. The errors for various parameter choices are shown in Table 2, as
computed with double precision arithmetic. It can be seen that the rules perform well
and the expected order of convergence is achieved in each case. The close spacing of the
corrections for c = k reduces the error considerably, compared with c = 1. The largest
correction weight for c = k = m=2 = 12 has magnitude � 3h=2, so cancellation errors are
minimal.

Table 1: Endpoint corrections transform the familiar trapezoidal rule into a high-order
quadrature for functions with several continuous derivatives. The quadrature rules are given

by the formula
R b
a
f(x) dx = Tn(f; a; b)+ h

Pm
i=1(d

m
ck)i [f(a+(i� 1)h0)+ f(b� (i� 1)h0)] +

O(hk); where h = (b�a)=n, h0 = h=c, and Tn(f) = h [12f(a)+f(a+h)+� � �+f(b�h)+
1
2f(b)].

The elements (dmck)i are tabulated as Ni=D.

c = 1 m = k � 1

k = 2 k = 4 k = 6 k = 8 k = 10 k = 12
D 1 24 1,440 120,960 7,257,600 958,003,200
N1 0 �3 �245 �23,681 �1,546,047 �216,254,335
N2 4 462 55,688 4,274,870 679,543,284
N3 �1 �336 �66,109 �6,996,434 �1,412,947,389
N4 146 57,024 9,005,886 2,415,881,496
N5 �27 �31,523 �827,7760 �3,103,579,086
N6 9,976 5,232,322 2,939,942,400
N7 �1,375 �2,161,710 �2,023,224,114
N8 526,154 984,515,304
N9 �57,281 �321,455,811
N10 63,253,516
N11 �5,675,265
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Table 2: Errors for the application of the corrected trapezoidal rules Tn(f; a; b)+D
mn
ck (f; a; b)

to the function f(x) = sin(23x) + cos(24x) on the interval [a; b] = [0; 1], as computed using
double precision arithmetic.

c = 1 m = k � 1 c = k m = 2k
n k = 4 k = 8 k = 12 k = 4 k = 8 k = 12
10 1.70E�02 1.83E�02 | 1.49E�02 6.92E�4 1.10E�06
20 5.32E�04 1.78E�04 4.43E�04 3.79E�04 3.07E�07 3.75E�10
40 1.21E�05 4.33E�06 1.17E�07 1.35E�05 5.10E�10 5.34E�14
80 2.38E�06 9.83E�09 9.14E�11 2.13E�06 1.83E�13 2.90E�15
160 1.99E�07 9.60E�12 1.51E�14 1.72E�07 3.00E�16 3.00E�16
320 1.39E�08 2.85E�14 2.20E�15 1.20E�08 3.80E�15 1.00E�16

Table 3: Limiting values as n!1 of endpoint corrections �mm0n
ckc0k0 for three di�erent singu-

larities. Here c = k = m=3 = 16 and k0 = 4.
c
0 = 8 m

0 = 8

s(x) = x
�1=2

s(x) = log(x) s(x) = x
1=2

.7889576157976986E+01 .3093483401777122E+01 .1761384695584808E+01
�.1014839102693306E+03 �.3101788376740790E+02 �.1382118344852977E+02
.4982052353339497E+03 .1362059155903270E+03 .5459150117813370E+02
�.1241778604543411E+04 �.3147474808724214E+03 �.1173574845498706E+03
.1751093993580452E+04 .4215054127612634E+03 .1507790199321616E+03
�.1419085152097947E+04 �.3287854038787327E+03 �.1147784911579322E+03
.6179863268019096E+03 .1388011671370668E+03 .4762309598361213E+02
�.1123274649636003E+03 �.2455521037187227E+02 �.8297842633159577E+01

c
0 = 4 m

0 = 16

s(x) = x
�1=2

s(x) = log(x) s(x) = x
1=2

.8462579989929540E+01 .3448173692662518E+01 .2050559756045592E+01
�.5435908661112594E+02 �.1601143873638304E+02 �.6865912494117176E+01
.1004033238128716E+03 .2427502641368332E+02 .8491285270322254E+01
�.1562169259798149E+02 .4722206428800859E+00 .1705242848943216E+01
�.6374313277726896E+02 �.1447823711138307E+02 �.4604469053907677E+01
�.3072510651936008E+02 �.9989335956026066E+01 �.4354220712239432E+01
.2115143836148849E+02 .2211594559407416E+01 �.3188321047055960E+00
.4683397742937565E+02 .1043094039079357E+02 .3251630138161534E+01
.3502121990978420E+02 .9802590813947814E+01 .3885773620301128E+01
�.1616432670704066E+00 .2167076760778314E+01 .1580226691059038E+01
�.3336312819210096E+02 �.6661869944148136E+01 �.1806976420043709E+01
�.4173860435447336E+02 �.1034071990767905E+02 �.3745300019759054E+01
�.1641816344862332E+02 �.5384782825493895E+01 �.2450268607844168E+01
.2850714644518526E+02 .5793630843054246E+01 .1662082464711006E+01
.4919461810492213E+02 .1228302599763183E+02 .4590184679455359E+01
�.3294374628555238E+02 �.7517895633725869E+01 �.2571006056382313E+01
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4.2 Singular Integrands

Several examples have been computed for singular integrands. The test function f(x) =
sin(23x) + cos(24x) + s(x)(sin(21x) + cos(22x)) was used, for the singular part s(x) one
of the functions x�1=2, log(x), and x1=2. The correction coe�cients were computed using
REAL *16 (quadruple precision) arithmetic, due to the poor conditioning of the small scale
linear systems to be solved. Note that although the correction coe�cients di�er for various
n, they reach limiting values as n!1 (see [6]); this property enables us to compute them
for several n and obtain them for other values of n by interpolation.

Table 3 shows the limiting values of the correction coe�cients for k0 = 4. For each of
the three singularities, two values of the pair (c0;m0) were used. These results demonstrate
that while the correction coe�cients are rather large for k0 = 4, their size can be controlled
(to avoid cancellation errors) by decreasing c0 and increasing m0. Table 4 displays the
quadrature errors resulting from using the correction coe�cients on the test function. The
quadrature computations were made using double precision arithmetic. These examples
demonstrate that with appropriate choices of the parameters c; k; c0; k0;m and m0, e�ective,
high-order quadratures for known singularities are practical.

Table 4: Errors for the application of the corrected trapezoidal rules Rmn
ck (f; b)+�mm0n

ckc0k0 (f; b)
to the function f(x) = sin(23x) + cos(24x) + s(x)(sin(21x) + cos(22x)), for three choices of
the singular function s(x), on the interval [0; b] = [0; 1], as computed using double precision
arithmetic. Here c = k = m=3 = 16.

c
0 = m

0 = 2k0

s(x) = x
�1=2

s(x) = log(x) s(x) = x
1=2

n k = 4 k = 8 k = 4 k = 8 k = 4 k = 8
10 2.97E�02 2.04E�05 6.70E�03 1.91E�06 9.12E�03 9.83E�07
20 1.27E�03 1.51E�08 3.59E�05 4.06E�10 7.86E�07 3.34E�10
40 1.41E�05 3.36E�09 4.78E�07 7.49E�11 1.53E�07 9.15E�12
80 5.12E�07 3.21E�09 7.01E�10 1.58E�10 4.46E�09 4.55E�11
160 1.73E�08 1.34E�10 2.71E�10 5.21E�12 1.12E�10 2.87E�14
320 6.12E�10 1.36E�11 1.61E�11 3.83E�13 2.88E�12 7.19E�15

c
0 = k m

0 = 4k0

s(x) = x
�1=2

s(x) = log(x) s(x) = x
1=2

n k = 4 k = 8 k = 4 k = 8 k = 4 k = 8
10 1.07E+01 2.17E+00 2.29E�01 1.14E�01 2.75E�01 4.51E�02
20 1.81E�01 8.13E�04 8.01E�03 2.20E�05 3.32E�03 1.55E�05
40 2.97E�03 7.98E�07 1.83E�04 3.29E�08 7.93E�05 7.63E�09
80 4.76E�05 2.26E�10 4.99E�06 1.45E�11 3.77E�07 3.45E�12
160 2.68E�06 3.67E�12 5.31E�08 1.51E�13 2.45E�08 1.26E�14
320 9.35E�08 6.62E�14 4.67E�10 1.64E�14 6.58E�10 3.08E�16
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5 Discussion

In this paper we have developed quadratures based on the trapezoidal rule that achieve high-
order convergence for integrands with known singularities. These rules, with quadrature
nodes that are equispaced except for the correction terms, are well suited to the evaluation
of integral operators, which typically must be evaluated at multiple points. We remark that
the locations of the density values can be equispaced, with the values at correction nodes
determined by local interpolation (see, e.g., [2]).

The quadratures presented here overcome a limitation of similar quadratures developed
by Rokhlin [6], namely that the correction weights grow rapidly with increasing order. The
slowdown in growth is achieved by allowing more correction weights than required by the
number of constraining equations and minimizing their sum of squares.

We have demonstrated the asymptotic behavior of the quadratures and the quadrature
weights analytically, while giving numerical examples to demonstrate their e�ectiveness for
typical parameter values.
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